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Electron oscillations in a plasma slab
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We have found that new nonlinear volume plasma modes can exist in cold plasma slabs with particular
density profiles. The wave trapping disappears in the linear limit.@S1063-651X~98!05711-0#

PACS number~s!: 52.35.Mw
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The science of low-temperature bounded plasmas is no
well developed as that of high-temperature fusion plasm
Because of many possible industrial applications@1# it is,
however, desirable that plasma physicists focus more at
tion on cold bounded plasmas. Although the linear behav
of such plasmas has been fairly well understood for a lo
time ~see, e.g., the review papers@2# and @3#! it has been
difficult to secure a thorough understanding of their nonl
ear properties@4,5#. Thus, there are still some important b
sic, but nontrivial, theoretical problems that remain to
solved.

In the present Brief Report we are going to conside
very simple geometry, namely a plasma slab of width 2d.
The electrons are assumed to be cold, and the ions ar
garded as an immobile background with densityn0(x). We
shall for simplicity restrict our analysis toone-dimensional
volume plasma oscillations. Our electron fluid is thus go
erned by the equations of continuity and momentum, and
Poisson equation, i.e.,

] tn1]x~nv !50, ~1!

] tv1v]xv5~q/m!E, ~2!

and

]xE5q~n2n0!/«0 , ~3!

whereE(x,t) x̂, n(x,t), v(x,t) x̂, q, andm represent the elec
tric field, electron density, velocity, charge, and mass,
spectively.

In a previous paper@6# a plasma slab with constant io
density was considered. The slab was bounded by a die
tric at x52d0 and x51d0 . For piecewise constant initia
density perturbations@6#, e.g., n(x,0)5n0(11D) for 2d0
<x,2d0/2 and d0/2,x<d0 , and n(x,0)5n0(12D) for
2d0/2<x<d0/2, whereD is a constant parameter describin
the initial electron density perturbation, it turned out to
possible to find exact solutions, with boundary conditi
v(6d0 ,t)50, for any amplitude. The solutions had an e
plosive character for sufficiently large values ofD. In the
present paper, where the ion density is a more general f
tion of x, one may similarly find the electron motion b
replacing the ion density profilen0(x) by piecewise con-
stantsn0 j for dj,x<dj 11 . In each short intervalj, one can
then look for solutions with electron densitiesnj (t) and ve-
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locitiesv j (x,t)5u0 j (t)1u1 j (t)x, and match the velocities a
the boundaries. Due to very lengthy algebra it is, however
reality impossible to proceed in this way. Thus, in t
present Brief Report we shall propose an alternative met
where a perturbation expansion in the wave amplitude
used.

We first eliminaten and E in Eqs. ~1!–~3! to obtain the
equation for the electron fluid velocityv

] t
2v1vp

2~x!v1] t]xv
2/21v] t]xv1v]x

2v2/250 ~4!

where vp5(n0(x)q2/«0m)1/2 is the electron plasma fre
quency.

Next, we look for a solutionv5( jv j (x)exp(2ijvt),
wherev1exp(2ivt) is the linear solution. Keeping only th
lowest order terms, i.e., limiting our analysis to a small a
plitude expansion, we then calculatev2 from

] t
2v21vp

2~x!v21] t]xv1
2/21v1] t]xv150, ~5!

which means that

v25 3
2 iv]xv1

2/~vp
2~x!24v2! ~6!

The equation forv1 is accordingly

] t
2v11vp

2~x!v11] t]x~v1* v2!1v1* ] t]xv21v2] t]xv1*

1v1]x
2~v1v1* !1v1* ]x

2v1
2/250, ~7!

i.e.,

v15@3ivv1* ]xv22v1]x
2~v1v1* !2v1* ]x

2v1
2/2#/~vp

2~x!2v2!.
~8!

Inserting Eq.~6! for v2 into Eq. ~8!, and noting that here
v15v1* , it follows from ~8! that

v22vp
2~x!53]x~u21]xv1

2/2!, ~9!

where

u5~vp
2~x!24v2!/~vp

2~x!2v2!. ~10!

The electric field and electron fluid velocity are zero at t
turning points which are denoted by the coordinatesx52d
and x51d. It follows from Eq. ~9! that u is also zero at
8044 © 1998 The American Physical Society
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these points. Consequently we choose the slab boundari
be atx56d. The solution of Eq.~9! is accordingly

v1
2~x!5 2

3 E
2d

x

dx8u~x8!E
2d

x8
dx9@v22vp

2~x9!#, ~11!

which, together with the conditionv1
2(d)50, yields the dis-

persion relation

v25F E
2d

d

dx u~x!E
2d

x

dx8vp
2~x8!G Y E

2d

d

dx~x1d!u~x!.

~12!

Equation~12!, together with Eq.~10!, is the main result of
this Brief Report. By using our specific slab profile functio
n0(x), or vp

2(x), we have thus deduced an equation fro
which v2 can be calculated. It should then be stressed
only slabs with particular density profiles can support o
resonant volume oscillations, for which the fitting of th
boundary conditions can occur. The wave amplitudes sho
also be so small that the omission of fourth order terms in
expansion below Eq.~4! is justified. This means thatv1 has
to be much smaller thanvp(0)d.

In order to shed some light on Eq.~9!, it may first be
instructive to inspect the linear limit. As Eq.~9! then reduces
to the impossible equalityv22vp

2(x)50 we have to slightly
generalize our basic equations by adding a pressure
2v t

2(]xn)/n to the right hand side of Eq.~2!, wherev t is a
parameter representing the thermal velocity. Thelinearized
equation which corresponds to Eq.~9! is then@7,8#

v22vp
2~x!52~v2/v1!]x~lD

2 ]xv1!, ~13!

wherelD(x)5v t /vp is the electron Debye length.
Thus, whereas Eq.~9! has been derived for a cold an

slightly nonlinear plasma, Eq.~13! is the corresponding re
sult for a low-temperature and linear plasma. In both ca
the right hand side of the deduced equations@~9! and~13!# is
necessary to determine the two turning points for our in
mogeneous plasma. The waves are trapped between
turning points.
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We have tried to generalize our problem to conside
slightly nonlinear low-temperature plasma. Due to ma
ematical difficulties we did not derive a useful generalizati
of Eqs.~9! and ~13!, however.

With a slowly varying wave numberk(x) one has, from
Eq. ~13!,

v22vp
2~x!2v2k2~x!lD

2 ~x!50. ~14!

As an example@7#, if vp
25v0

2(11x2/x0
2) wherev0 and

x0 are constants, Eq.~14! determines the turning pointsx1,2

56(v2/v0
221)x0 , which together with the Bohr-

Sommerfeld quasiclassical quantization rule@8# *x2

x1dx k(x)

5p( j 11/2) wherej is an arbitrary integer, yields

v25v0
21~2 j 11!v0v t /x0 . ~15!

In our cold plasma case, which obviously differs signi
cantly from those described in the linear limit@7,8#, we can-
not find any turning points unless the nonlinear terms
included. A basic formula~12!, that corresponds to Eq.~15!,
was therefore derived. In evaluating that eigen frequency
mula, one has in general to face some rather lengthy alge
As a comparatively simple example, we choose a slab w
vp

25v0
2(11x/x0) for x,0 and vp

25v0
2(12x/x0) for x

.0, wherex0.d. Equation~12! can for this particular pro-
file, after some straightforward algebra, be reduced to
equation

118p212p~113p!ln~111/3p!50. ~16!

for p[v2/v0
2. Equation~16! has a solutionp;0.05, which

demonstrates that this cold slab can support resonant vol
oscillations. The frequency is slightly changed if, by mea
of very lengthy algebra, fourth order terms in the amplitu
expansion are included. Adopting other slab density profi
one can similarly calculate the eigenfrequencies by mean
Eq. ~12!.
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